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Abstract
Visual prompting is an efficient methodology for finetuning pre-
trained visual models by introducing a small number of learnable
parameters while keeping the backbone frozen. However, most
existing visual prompting methods learn a shared prompt for all
samples, making it challenging to grasp distinct characteristics
among diverse samples, thereby limiting the model’s performance.
While other methods partially address this issue through sample
clustering and learning multiple prompts, they still struggle to cap-
ture nuanced differences among instances and incur significant
parameter overhead. Therefore, to comprehensively and efficiently
leverage discriminative characteristics of individual instances, we
propose an Instance Visual Prompting method, called InsVP. Ini-
tially, the instance image prompt is introduced to extract both
crucial and nuanced discriminative information from the original
image itself and is overlaid onto the input image. Furthermore, the
instance feature prompt is designed to capture both commonali-
ties and characteristics among individual instances, fed into the
model’s intermediate layers to facilitate feature extraction. Con-
sequently, the instance image and feature prompts complement
each other, enhancing the adaptation ability of pretrained models
to extract discriminative features from individual instances. Ex-
tensive experiments on various large-scale benchmarks show that
our InsVP achieves superior performance exceeding the state-of-
the-art methods at a lower parameter cost. The code is available at
https://github.com/zhoujiahuan1991/MM2024-InsVP
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Figure 1: Existing visual prompting methods [3, 15, 19, 22]
train a shared prompt for all samples or within clusters,
struggling to capture the distinct characteristics of individual
instances. In contrast, our InsVP employs an image-driven
instance prompt, capturing distinctive areas of instances
and guiding the pretrained model to focus on them. The
visualization results by Grad-CAM [39] verify that InsVP
focuses on discriminative regions of images and achieves
excellent performance.

2024, Melbourne, VIC, Australia. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3664647.3681233

1 Introduction
Over the past years, the deep learning community has widely em-
braced the pretraining-finetuning paradigm, which has played a
pivotal role in propelling the field of computer vision (CV) [14, 20,
21, 25, 48, 55]. However, with the explosive growth of model size
and data scale, such a conventional paradigm suffers from unaf-
fordable storage and computational overheads [22]. Therefore, the
latest efforts [5, 15, 16, 54] have concentrated on how to adapt the
pretrained models to a particular downstream task efficiently. No-
tably, the emergence of visual prompting technology [3, 19, 22] has
taken the lead in addressing this challenge. By introducing a small
number of learnable parameters, visual prompting can efficiently
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adapt the pretrained models to downstream tasks while keeping
the whole pretrained backbone frozen.

Most existing visual prompting methods have opted for a shared
prompt that is applied uniformly to all data [3, 15, 22, 49], disre-
garding the potentially significant variations among different data,
as shown in Figure 1. Consequently, the learned prompts fail to cap-
ture the distinct characteristics of individual instances, considerably
limiting the discriminative power of deep models [19]. To overcome
this limitation, recent visual prompting methodologies [19] have
endeavored to cluster samples and simultaneously learn a cluster-
specific prompt for each cluster, thereby mitigating the issue to
some extent. However, these approaches still struggle to capture
the subtle nuances of individual instances, as even samples within
the same cluster exhibit fine-grained distinctions. Moreover, these
methods unavoidably introduce significant parameter overhead,
substantially impeding the scalability of the pretrained model.

To address these limitations, we propose a novel and efficient vi-
sual prompting method InsVP, namely Instance Visual Prompting.
As illustrated in Figure 1, InsVP extracts distinctive areas unique to
individual instances from the image itself, guiding the pretrained
model to focus on the exclusive discriminative characteristics of the
instances. To achieve this, we first design the image-level instance
visual prompting to highlight the discriminative areas of instances
in the input image, which comprises two complementary compo-
nents of patch prompt and global prompt. By forwarding the input
image to the designed lightweight prompters, the obtained patch
prompt captures fine-grained local information from individual
patches, meanwhile the global prompt gathers overall information
from the entire image. Together, they complement each other in
extracting the distinguishing regions of the instances, resulting in
an instance image prompt that is overlaid onto the original image.

Furthermore, our InsVP also introduces the feature-level instance
visual prompting to continuously incorporate instance information
into the intermediate layers of the pretrained model. Consider-
ing both the commonalities and characteristics between different
instances at the feature level, we design the learnable common
prompt and the generated specific prompt respectively. Motivated
by VPT [22], several learnable tokens are introduced as the common
prompt to distill overarching patterns and fundamental attributes,
fostering a comprehensive exploration of commonalities across all
images. Moreover, a lightweight specific prompter is proposed to
enhance the distinctive features specific to the individual instance
from the input image itself. The collaboration between the common
and specific prompts improves the adaptation capacity of the model
to different instance samples, leading to superior performance.

The main contributions of this work are four-fold: (1). To address
the limitations of existing visual prompting methods, we propose
InsVP, an efficient approach aimed at comprehensively leverag-
ing the discriminative instance-specific information of the input
image itself to enhance the recognition capability of pretrained
models. (2). In InsVP, a novel image-level instance visual prompting
scheme is designed to capture and emphasize the discriminative
areas of different instances in the input image. (3). Moreover, a
complementary feature-level instance visual prompting model is
developed in InsVP to direct the pretrained model to pay attention
to the discriminative characteristics of the instances to facilitate
feature extraction. (4). Extensive experiments on various datasets

show that our InsVP significantly outperforms the existing visual
prompting methods with a much lower parameter cost.

2 Related Work
2.1 Parameter-Efficient Finetuning
Vision Transformer (ViT) has made remarkable achievements in
the field of computer vision [1, 7, 13, 30, 46]. However, with the
rapid increase in model size, fully finetuning the pretrained ViT
models for downstream tasks inevitably brings large storage and
computing overhead. Therefore, recent works [15, 22, 54] started to
focus on reducing the number of learnable parameters for efficient
finetuning of pretrained models which can be broadly categorized
into partial tuning-based, extra module-based, and prompt learning-
based ones.

Partial tuning-based approaches [16, 35, 50, 56] aim to freeze
the majority of the pretrained backbone while finetuning a small
portion of the model parameters. For instance, such methods might
only adjust the Linear/MLP heads [16, 20], or refine a part of lay-
ers within the backbone [35, 50, 56]. While these approaches are
straightforward and simple to implement, they commonly exhibit
a substantial performance gap when compared to fully finetun-
ing [10, 32]. In contrast, extra module-based methods [5, 36, 38, 52,
54] design additional learnable plug-in architectures to finetune the
pretrained model. [54] introduced an extra learnable side network
while maintaining the original model frozen. Similarly, other stud-
ies [8, 36, 38] proposed to insert extra learnable residual units into
the backbone. A limitation of these approaches lies in their cus-
tomized nature for specific architectures, hindering generalizability
to other models. Moreover, these modules obviously introduce more
learnable parameters compared to partial tuning-based methods,
making them difficult to apply in practice [15, 22].

2.2 Prompt Learning
Prompt learning techniques initially emerged in the field of natural
language processing (NLP), involving the integration of a small
set of learnable soft-prompt into input texts to tailor language
models for specific downstream tasks [26–28]. Recent studies have
extended prompt learning to visual tasks, termed visual prompt
learning or visual prompting [3, 6, 15, 19, 22, 29, 49]. Compared
with partial tuning-based and extra module-based methods, the
visual prompting-based approaches introduce significantly fewer
additional parameters and achieve better compatibility with models
of different structures [15, 22].

Specifically, existing visual prompting methods usually follow
two popular manners, task-level visual prompting [3, 15, 22, 41, 44,
49] and cluster-level visual prompting [19]. The former involves all
downstream data samples learning a set of shared image prompts.
VP [3] learned a single prompt for all samples, which is added
around the image in the form of padding and then fed into the
pretrained model together with the original image. VPT [22] intro-
duced several learnable tokens as the prompt shared by all samples
which are used in the multi-head self-attention (MSA) blocks of the
pretrained ViT model. On the basis of VPT, E2VPT [15] pruned the
learned prompts from both the token-wise and segment-wise per-
spectives, which reduces the impact of unfavorable prompts while
reducing the number of additional parameters required. However,
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Figure 2: The pipeline of our proposed InsVP. For each image instance, InsVP first utilizes two lightweight prompters G𝑙 and
G𝑔 to generate its patch prompt 𝒑𝑙 and global prompt 𝒑𝑔 respectively. Then they are merged into the instance image prompt 𝒑𝐼 ,
which is further superimposed on the original image as the input of the pretrained model. Furthermore, the specific prompter
G𝑠 is used to get the specific prompt 𝒑𝑠 . It is merged with the learnable common prompt 𝒑𝑐

𝑖
to form the instance feature prompt

𝒑𝐹
𝑖
, which serves as the input tokens of the MSA blocks.

the above methods fail to capture the discriminative characteristics
of instances, limiting the model performance [19]. The latest cluster-
level visual prompting method DAM-VP [19] involved clustering
samples and learning a set of visual prompts for each cluster. This
approach partly mitigates the above problem, yet still struggles to
capture subtle differences among instances within the same cluster.
In addition, it will bring large parameter overhead, resulting in poor
scalability. In contrast, our proposed InsVP introduces lightweight
prompters to generate an instance prompt for each sample.

3 InsVP: Instance Visual Prompting
In this section, we illustrate the proposed visual prompting method
InsVP in detail. InsVP aims to generate instance-specific visual
prompts for each individual image to adapt the pretrained model
efficiently. The notations used in this paper are introduced in Sec-
tion 3.1, followed by the introduction of the image-level instance
prompting in Section 3.2 and feature-level instance prompting in
Section 3.3. The overall pipeline of InsVP is depicted in Figure 2.

3.1 Preliminaries
For a pretrained Vision Transformer (ViT) [13] backbone M, it
contains 𝑁 MSA blocks {B𝑗 }𝑁𝑗=1 where each B𝑗 consists of multi-
head self-attention and feed-forward networks together with Lay-
erNorm [2] and residual connections [17]. For an input image
𝒙 ∈ R𝐻×𝑊 ×𝐶 , it is initially divided into several equally sized
patches {𝒙𝑖 }𝑀𝑖=1 ∈ Rℎ×𝑤×𝐶 , where (𝐻,𝑊 ) is the size of image
𝒙 , 𝐶 is the number of channels of 𝒙 , (ℎ,𝑤) is the size of patch 𝒙𝑖 ,
𝑀 is the number of patches. Each patch 𝒙𝑖 is then first embedded

into a 𝑑-dimensional latent space as:

𝒉1𝑖 = E (𝒙𝑖 ) , (1)

where 𝒉1𝑖 ∈ R𝑑 , E(·) donates the embedding layer of the backbone
M. Subsequently, all image tokens {𝒉1𝑖 }

𝑀
𝑖=1 along with an additional

classification token 𝒄1 ∈ R𝑑 are fed into the 𝑁 MSA blocks {B𝑗 }𝑁𝑗=1
to extract features as:[

𝒄 𝑗+1,𝒉
𝑗+1
1 , · · · ,𝒉 𝑗+1

𝑀

]
= B𝑗

( [
𝒄 𝑗 ,𝒉

𝑗

1, · · · ,𝒉
𝑗

𝑀

] )
, (2)

where “[ ]” indicates stacking and concatenating on the sequence
length dimension. Finally, the output 𝒄𝑁+1 from the last MSA block
is passed through a classification head H to derive the predicted
probability distribution 𝒚:

𝒚 = H (𝒄𝑁+1) (3)

3.2 Image-level Instance Visual Prompting
To capture distinctive information of the input instance image 𝒙 ,
we initially propose image-level instance visual prompting, which
involves generating the instance image prompt for each input image
to improve the performance of the pretrained model M.

Specifically, two lightweight networks, the global prompter G𝑔
and the patch prompter G𝑙 , are designed to readily explore the
global and local discriminative characteristics of 𝒙 . The global
prompter G𝑔 is composed of two layers of dilated convolution [51],
along with a ReLU activation layer and a Dropout layer. The uti-
lization of dilated convolution increases the receptive field of the
global prompter G𝑔 without adding extra parameters, providing it
with a broader global perspective across the entire image. Build-
ing on this design, the global promotor G𝑔 is capable of extracting
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global discriminative information from the original image 𝒙 via
the generated prompt 𝒑𝑔 ∈ R𝐻×𝑊 ×𝐶 , such as the object’s position,
shape, and contour details:

𝒑𝑔 = G𝑔 (𝒙) . (4)

Additionally, to fully capture the locally fine-grained informa-
tion of the individual image patch {𝒙𝑖 }𝑀𝑖=1, a patch image prompter
G𝑙 is leveraged. To generate the patch prompt efficiently, the patch
prompter G𝑙 consists of two fully connected layers, taking a single
image patch 𝒙𝑖 as input and producing the corresponding patch
prompt 𝒑𝑙

𝑖
. This patch-based design significantly reduces the input

and output dimensions of the fully connected layers, thereby de-
creasing the additional parameter overhead. By dividing the entire
image 𝒙 into𝑀 patches {𝒙𝑖 }𝑀𝑖=1, each patch 𝒙𝑖 is fed into the patch
prompter G𝑙 to obtain 𝒑𝑙

𝑖
as below:

𝒑𝑙𝑖 = G𝑙 (𝒙𝑖 ) , (5)

where 𝒑𝑙
𝑖
∈ Rℎ×𝑤×𝐶 . Subsequently, all {𝒑𝑙

𝑖
}𝑀
𝑖=1 are concatenated

in accordance with the relative order of the image patches {𝒙𝑖 }𝑀𝑖=1,
forming a complete patch prompt 𝒑𝑙 ∈ R𝐻×𝑊 ×𝐶 for the input
image 𝒙 .

Consequently, after generating the global image prompt 𝒑𝑔 and
the patch prompt 𝒑𝑙 , the instance image prompt 𝒑𝐼 ∈ R𝐻×𝑊 ×𝐶

for the input image 𝒙 is obtained by directly merging both two
prompts in a linear combination manner to amalgamate the global
and local information from the image itself:

𝒑𝐼 = 𝛽𝐼 · 𝒑𝑔 + (1 − 𝛽𝐼 ) · 𝒑𝑙 , (6)

where 𝛽𝐼 is a pre-defined weight hyper-parameter. Finally, the
image prompt 𝒑𝐼 is superimposed onto the original image, serving
as the input �̃� of the pretrained model M:

�̃� = 𝒙 + 𝒑𝐼 , (7)

where �̃� ∈ R𝐻×𝑊 ×𝐶 is the prompted image.

3.3 Feature-level Instance Visual Prompting
To further enhance the adaptation ability of the pretrained model
M, we design feature-level instance visual prompting to contin-
uously incorporate instance-specific information into the MSA
blocks. Given that at the feature level, different instances may ex-
hibit both similarities and differences in their characteristics, our
feature-level instance visual prompting proposes to utilize a com-
mon prompt 𝒑𝑐 and a specific prompt 𝒑𝑠 to simultaneously capture
the commonality information among different instances and the
distinctive information of each individual instance respectively.

Motivated by VPT [22], we introduce a number of 𝐿𝑝 learnable
tokens as the common prompt. For the sake of simplicity, we collec-
tively denote all introduced tokens as𝒑𝑐 without further distinction.
The common prompt 𝒑𝑐 consists of distinct prompts added to each
MSA block which is commonly used for all instances:

𝒑𝑐 =

{
𝒑𝑐𝑗

}𝑁
𝑗=1

, (8)

where 𝒑𝑐
𝑗
∈ R𝑑×𝐿𝑝 is the common prompt for 𝑗-th MSA block B𝑗 .

As for the specific prompt 𝒑𝑠 ∈ R𝑑×𝐿𝑝 , it is directly obtained
from the image 𝒙 itself. In detail, a three-layer convolutional net-
work is designed as the specific prompter G𝑠 to generate 𝒑𝑠 for all
MSA blocks:

𝒑𝑠 = G𝑠 (𝒙) . (9)
The specific prompter G𝑠 employs convolutional and pooling layers
to encode the image 𝒙 into 𝒑𝑠 ∈ Rℎ×𝑤×(𝐶 ·𝐿𝑝 ) . Finally, the output
𝒑𝑠 is reshaped into the specific prompt 𝒑𝑠 ∈ R𝑑×𝐿𝑝 .

Subsequently, the complete instance feature prompt𝒑𝐹
𝑗
is formed

by adding up the common prompt 𝒑𝑐
𝑗
and specific prompt 𝒑𝑠 :

𝒑𝐹
𝑗 = 𝛽𝐹 · 𝒑𝑐𝑗 + (1 − 𝛽𝐹 ) · 𝒑𝑠 , (10)

where 𝛽𝐹 is a pre-defined weight hyper-parameter. The instance
feature prompt𝒑𝐹

𝑗
is combinedwith the image patch tokens {𝒉 𝑗

𝑖
}𝑀
𝑖=1

and the classification token 𝒄 𝑗 , then collectively fed into the MSA
block for feature extraction:[

𝒄 𝑗+1, �̂�𝐹
𝑗+1,𝑯

𝑗+1
]
= B𝑗

( [
𝒄 𝑗 ,𝒑

𝐹
𝑗 ,𝑯

𝑗
] )

, (11)

where 𝑯 𝑗 =

[
𝒉 𝑗1,𝒉

𝑗

2, · · · ,𝒉
𝑗

𝑀

]
. Notably �̂�𝐹

𝑗+1 get from B𝑗 is not
utilized in the next block B𝑗+1. Extensively extracting distinctive
characteristics from images, the instance feature prompt 𝒑𝐹 and
image prompt 𝒑𝐼 facilitate the pretrained model in capturing dis-
criminative features of individual instances. Ultimately, the 𝒄𝑁+1
obtained from the final MSA block B𝑁 undergoes processing via a
classification headH to get the predicted probability distribution
𝒚 via Equation 3.

3.4 Overall Optimization
As mentioned above, our InsVP introduces only a few additional
parameters:

G =
{
G𝑝 ,G𝑔,G𝑠 ,𝒑

𝑐
}
. (12)

The extra parameters of InsVP are notably lightweight compared to
the pretrained model and other visual prompting methods [15, 19,
22] as demonstrated in Section 4.4.5. Following previous works [15,
19, 22], during training, wemaintain the pretrainedmodel’s encoder
frozen while allowing only the classification head to be trainable.
The optimization objective is as follows:

argmin
G,H

L𝑐𝑒

(
𝒚, 𝑦𝑔𝑡

)
, (13)

where L𝑐𝑒 is cross-entropy loss, 𝑦𝑔𝑡 is the label of image 𝒙 .

4 Experiments
4.1 Datasets
Building upon previous works [15, 19, 22], the experiments are con-
ducted on four fine-grained datasets: CUB-200-2011 [43], NABirds [18],
Oxford Flowers [34], and Stanford Dogs [23]. Additionally, follow-
ing DAM-VP [19], we also perform experiments on another six
commonly used visual datasets, including DTD [11], Food101 [4],
Cifar100 [24], Cifar10 [24], GTSRB [40], and SVHN [33]. Follow-
ing [22], for datasets with only publicly available train and test
sets, we randomly split the train set into a train set (90%) and a
validation set (10%).

Additionally, we conduct experiments on the VTAB-1k bench-
mark [53] following [15, 22]. VTAB-1k is a benchmark that tests
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Table 1: The comparison results against state-of-the-art methods on ten datasets. Partial, Extra, and Prompting represent partial
tuning-based, extra module-based, and prompt learning-based parameter-efficient finetuning methods respectively. Following
their paper, ILM-VP, Yoo et al and AutoVP utilize ResNeXt-101-32x8d [47], MoCo v3 trained ViT-B/16 and CLIP [37] as the
backbone respectively. The best results are bolded and the second-best results are underlined.

Methods Publication DTD CUB Birds Dogs Flowers Food Cifar100 Cifar10 GTSRB SVHN Avg
Full [20] CVPR 2022 64.3 87.3 82.7 89.4 98.8 84.9 68.9 97.4 97.1 87.4 85.8

Pa
rt
ia
l Linear [20] CVPR 2022 63.2 85.3 75.9 86.2 97.9 84.4 63.4 96.3 68.0 36.6 75.7

Partial-1 [50] NeurIPS 2014 70.1 85.6 77.8 85.5 98.2 83.8 78.0 95.0 89.3 82.4 84.6
MLP-3 [9] CVPR 2020 66.2 85.1 77.3 84.9 97.9 84.6 77.5 93.2 71.8 60.5 79.9

Ex
tr
a

Bias [38] NeurIPS 2017 69.8 88.4 84.2 91.2 98.8 86.2 82.9 96.9 89.9 82.5 87.1
Sidetune [54] ECCV 2020 57.7 84.7 75.8 85.8 96.9 78.7 68.8 90.4 90.9 80.5 81.0
Adapter [36] NeurIPS 2020 62.7 87.1 84.3 89.8 98.5 86.0 74.2 97.7 91.1 36.3 80.8
AdaptFormer [8] NeurIPS 2022 64.2 87.3 84.1 88.1 98.4 85.7 79.4 96.5 91.7 83.0 85.8

Pr
om

pt
in
g

VP [3] arXiv 2022 59.5 84.6 77.7 84.5 97.7 80.5 78.7 94.2 89.4 87.6 83.4
VPT [22] CVPR 2022 65.8 88.5 84.2 90.2 99.0 83.3 78.8 96.8 90.7 78.1 85.5
DAM-VP [19] CVPR 2023 73.1 87.5 82.1 92.3 99.2 86.9 88.1 97.3 90.6 87.9 88.5
ILM-VP [6] CVPR 2023 41.4 7.7 11.6 87.6 27.9 23.0 45.9 81.7 59.9 81.4 46.8
Yoo et al [49] ICML 2023 69.6 82.9 76.0 83.4 93.7 82.9 85.8 97.3 92.6 90.1 85.4
E2VPT [15] ICCV 2023 66.8 88.4 84.2 91.3 99.0 84.0 80.4 97.1 91.0 79.2 86.1
TransHP [45] NeurIPS 2023 68.4 87.1 82.7 91.5 98.6 85.5 86.9 97.3 91.3 82.9 87.2
LION [44] AAAI 2024 - - - 83.6 90.5 - 65.4 90.8 - - -
AutoVP [41] ICLR 2024 62.5 85.4 83.5 90.3 90.4 82.3 77.9 95.2 93.1 92.9 85.4
InsVP(Ours) This Paper 74.5 89.3 84.6 93.6 99.2 89.5 91.3 98.4 96.1 96.1 91.3

Original 
Image

Prompted
Image

Grad-CAM

Prompt

Heatmap of 
Prompt

DAM-VP InsVP DAM-VP InsVP DAM-VP InsVP DAM-VP InsVP DAM-VP InsVP DAM-VP InsVP

Figure 3: Visualization results of various instance samples in CUB. We present the original images along with the prompts of
DAM-VP and our InsVP for the instances. Moreover, the heatmaps of the prompts, the prompted image, and the corresponding
Grad-CAM visualization results are also presented.

how well visual models perform across 19 different tasks. These
tasks fall into three categories: Natural, for everyday image recog-
nition; Specialized, for specific areas like medical images; and Struc-
tured, for understanding complex scenes.

4.2 Comparison Methods
We compare our InsVP with both parameter-efficient finetuning
methods and visual prompting methods. We also report the fully-
tuning results as a baseline. For parameter-efficient finetuning, we

report the results of partial tuning-based methods including linear
probing [20], Partial [50], MLP [16], and the results of extra module-
based methods including Sidetune [38], Bias [54], Adapter [36],
AdaptFormer [8]. For visual prompting methods, we compare with
the task-level visual prompting methods such as VP [3], VPT [22],
ILM-VP [6], Yoo et al [49], E2VPT [15], LION [44], AutoVP [41] and
the latest cluster-level visual prompting approach DAM-VP [19]
and TransHP [45].
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Table 2: The comparison results against state-of-the-artmeth-
ods on VATB-1k benchmark [53]. Following their paper, Yoo
et al utilizesMoCo v3 trainedViT-B/16 as the backbone. Other
methods utilize the ViT-B/16 [13] pretrained with supervised
training on ImageNet-21k [12] as the backbone.

VTAB-1kMethods Natural Specialized Structured
Full [20] 75.9 83.4 47.6

Pa
rt
ia
l Linear [20] 68.9 77.2 26.8

Partial-1 [50] 69.4 78.5 34.2
MLP-3 [9] 67.8 72.8 30.6

Ex
tr
a Bias [38] 73.3 78.3 44.1

Sidetune [54] 58.2 68.1 23.4
Adapter [36] 70.4 77.1 33.4
VPT [22] 78.5 82.4 55.0
Yoo et al [49] 74.8 83.4 49.1
E2VPT [15] 80.0 84.4 57.4

Pr
om

pt
in
g

InsVP(Ours) 81.8 85.2 58.4

Table 3: The comparison results of visual promptingmethods
on different network architectures. The Swin Transformer
pretrained on ImageNet-21k is utilized as the backbone.

Methods CUB Birds Cifar100 GTSRB SVHN
Full [20] 89.7 86.8 73.3 97.1 91.2
VP [3] 86.5 82.9 80.6 82.4 80.3
VPT [22] 90.0 85.4 80.5 86.2 87.8
DAM-VP [19] 90.4 86.9 88.1 86.8 81.7
E2VPT [15] 90.3 85.2 83.5 87.1 88.2
InsVP 91.2 87.7 90.3 90.1 91.4

Table 4: The comparison results of visual promptingmethods
on different pretraining methods. The MoCo-v3 learned ViT-
B/16 is utilized as the backbone.

Methods CUB Birds Cifar100 GTSRB SVHN
Full [20] 78.8 72.8 84.0 96.8 90.6
VP [3] 75.4 69.0 79.1 89.8 91.3
VPT [22] 72.1 65.3 72.8 88.5 61.8
DAM-VP [19] 79.7 71.4 81.8 92.8 89.3
E2VPT [15] 73.3 66.8 80.4 89.2 80.3
InsVP 80.2 72.8 83.5 95.6 92.7

4.3 Implementation Details
Our experiments involve three pretrained vision models including
the ViT-B/16 [13] and Swin Transformer [30] which are supervised
by ImageNet-21k [12], and another ViT-B/16 that is learned via
MoCo v3 [10]. Following DAM-VP [19], we train for 100 epochs on
all datasets. We utilize the AdamW [31] optimizer for optimization
and implement cosine annealing. The hyper-parameters length of
instance feature prompt 𝐿𝑝 , fusion weight of image prompts 𝛽𝐼 ,
and fusion weight of feature prompt 𝛽𝐹 are set to 9, 0.7, and 0.5
respectively. The learning rate and weight decay on each dataset
are detailed in the Supplementary Materials.

Original 
Image

Patch 
Prompt 𝒑𝑙

Heatmap
of 𝒑𝑙

Global 
Prompt 𝒑𝑔

Heatmap
of 𝒑𝑔

Instance Image 
Prompt 𝒑𝐼

Heatmap 
of 𝒑𝐼

Figure 4: Visualization of the generated instance image
prompt 𝒑𝐼 , global prompt 𝒑𝑔, and patch prompt 𝒑𝑙 through
our InsVPmethod. The image prompt 𝒑𝐼 is derived by adding
the global prompt 𝒑𝑔 and the patch prompt 𝒑𝑙 together.

4.4 Comparison with State-of-the-arts
4.4.1 Comparison on Pretrained ViT. We first conduct experiments
on ten popular datasets using the ImageNet-21k supervised ViT-
B/16 [13] as the pretrained model. As shown in Table 1, compared
with other SOTA parameter-efficient finetuning and visual prompt-
ing methods, our InsVP exhibits a notable improvement of 3.5% and
6.0% on the GTSRB and SVHN respectively. Furthermore, across
the other eight datasets, InsVP all achieves the best performance.
Overall, compared with the second-best player, the cluster-level
prompting method DAM-VP, our InsVP achieves an average im-
provement of 2.8% across the ten datasets. This is because our InsVP
leverages image-level and feature-level instance visual prompting
to elaborately capture discriminative characteristics of individual
instances which enhance the pretrained model’s recognition capa-
bility, leading to more accurate prediction results.

To verify this, we further present the obtained prompts and
Grad-CAM visualization results of the samples in CUB. As shown
in Figure 3 and Figure 4, the visualization results reveal that DAM-
VP employs the exact same prompt for the samples belonging to
the same category but exhibiting significant differences. Moreover,
it seems that the learned prompts of DAM-VP lack a direct connec-
tion with the image samples or categories, and explicit semantic
information is not observed. The Grad-CAM visualization results
also indicate that under their prompts, the pretrained model fails
to focus on discriminative regions of the instances. In contrast, our
InsVP precisely outlines the object and identifies discriminative
regions, such as the location of the bird’s head and neck. Conse-
quently, the model can more precisely focus on the object itself
rather than the background, leading to outstanding performance.

6448



InsVP: Efficient Instance Visual Prompting from Image Itself MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of Extra Parameters (×105)

65

70

75

80

85

90

95

100

A
cc

ur
ac

y 
(%

)

CUB

Dogs

DTD

Cifar100

Cifar10 E2VPT
VPT
DAM-VP
InsVP (Ours)

Figure 5: The comparison results of InsVP with other visual
prompting methods in the number of extra parameters and
model performance.

4.4.2 Experiments on VTAB-1k Benchmark. To further validate the
effectiveness of our InsVP, in addition to the ten datasets men-
tioned above, following [15, 22], we also conduct experiments on
another widely used VTAB-1k [53] benchmark. As shown in Table 2,
compared to the second-best method, E2VPT [15], InsVP achieve
improvements of 1.8%, 0.8%, and 1.0% in the three different tasks
Natural, Specialized, and Structured, respectively. This further illus-
trates the robust adaptability of our instance-level visual prompting
designed based on the original image across diverse tasks.

4.4.3 Comparison on Different Model Architectures. To verify the
generalization ability of our InsVP across different model architec-
tures, we conduct experiments using the Swin Transformer [30] as
the backbone. As shown in Table 3, although the Swin Transformer
is a more advanced model that utilizes the shifted windows, com-
pared with other visual prompting methods, our InsVP exhibits a
consistent improvement of 1% to 3% across five datasets. This is be-
cause our InsVP is not designed for a specific network architecture.
Instead, our InsVP directly extracts discriminative characteristics
from each instance image itself, making it compatible with various
pretrained model architectures.

4.4.4 Comparison on Different Pretraining Methods. In addition
to supervised training, self-supervised contrastive learning, such
as the MoCo paradigm [10], is also a commonly used method for
model pretraining. To validate the generalization of our InsVP
across different pretraining techniques, we conduct experiments
based on the pretrained ViT-B/16 backbone via the MoCo v3 par-
adigm [10]. As reported in Table 4, our InsVP outperforms other
methods with an improvement ranging from 1% to 3% across five
datasets consistently. This superiority is attributed to that our ap-
proach is directly tied to the characteristics of the data, showcasing
enhanced adaptability to different pretraining paradigms.

4.4.5 Comparison of Extra Parameter Overhead. For visual prompt-
ing methods, the number of introduced extra parameters is a crucial
factor in determining their practical applicability. As illustrated in

Table 5: Ablation study about the influence of components
in InsVP. “-” and “✓” represent without or with this compo-
nent. 𝒑𝐼 represents the instance image prompt, comprising
patch prompt 𝒑𝑙 and global prompt 𝒑𝑔 , and 𝒑𝐹 represents the
instance feature prompt, consisting of common prompt 𝒑𝑐

and specific prompt 𝒑𝑠 .

𝒑𝐼 𝒑𝐹

𝒑𝑙 𝒑𝑔 𝒑𝑐 𝒑𝑠
CUB Birds Cifar100 SVHN

- - - - 85.3 75.9 63.4 36.6
✓ - - - 87.1 83.1 85.5 85.3
✓ ✓ - - 87.9 83.5 87.0 91.8
✓ ✓ ✓ - 88.9 84.3 90.3 94.5
✓ ✓ ✓ ✓ 89.3 84.6 91.3 96.1

(a) SVHN (b) GTSRB

Figure 6: The t-SNE visualization results of specific prompt
𝒑𝑠 generated by specific prompter G𝑠 .

Figure 5, we compare the additional parameter quantities intro-
duced by InsVP and other visual prompting methods. In the case
of task-level visual prompting methods, since they use a shared
prompt for all samples, a significant number of learnable tokens
are required to capture diverse features of different samples. On the
other hand, for cluster-level visual prompting methods like DAM-
VP, a set of prompts needs to be learned for each cluster, resulting in
a substantial increase of extra parameters, reaching several times or
even hundreds of times [19], thereby compromising the scalability.

In contrast, our proposed InsVP adopts a more straightforward
methodology by extracting crucial prompting information directly
from raw images. This allows InsVP to efficiently capture dis-
criminative characteristics by lightweight prompters. Therefore,
as shown in Figure 5, InsVP achieves optimal performance with
minimal parameter costs.

4.5 Ablation
4.5.1 Influence of Different Components. To verify the effective-
ness of different prompts in our proposed InsVP, ablation experi-
ments are conducted on four datasets and reported in Table 5. As
demonstrated, when neither component is used, the InsVP is de-
graded to a frozen pretrained ViT model with a learnable classifier.
Taking results on CUB as an example, when using only the patch
prompt 𝒑𝑙 , the model’s performance improved by 1.8%. Further-
more, when both the patch prompt 𝒑𝑙 and the global prompt 𝒑𝑔 are
used simultaneously, the model’s performance further increases by
0.8%. This is because the local information captured by the patch
prompt 𝒑𝑙 and the global information in the global prompt 𝒑𝑔 can
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Figure 7: Influence of hyper-parameters of InsVP in CUB.

complement each other, allowing for more accurate extraction of
discriminative information of individual instances. Moreover, when
adding the feature-level common prompt 𝒑𝑐 , it captures the com-
mon characteristics of all instances, resulting in an additional 1.0%
improvement in model performance. Finally, with the addition of
the generated specific feature prompt 𝒑𝑠 , the complete InsVP is
obtained. The specific prompt 𝒑𝑠 extracts unique discriminative
characteristics from individual instances, enabling the model to
more accurately extract features for each instance and achieve the
best performance. The results on other datasets also demonstrate a
consistent trend to that observed on CUB.

4.5.2 The t-SNE Visualization Results of Specific Prompt 𝒑𝑠 . To
further explore the impact of the specific prompt, we perform t-SNE
visualization for specific prompt 𝒑𝑠 generated by specific prompter
G𝑠 on SVHN and GTSRB datasets. As illustrated in Figure 6 below
shows a notable correlation between specific prompts’ distribution
and sample categories. Despite being added to the middle layer of
the network, specific prompts effectively capture discriminative
information unique to individual instances, showing variability
across different categories.

4.5.3 Influence of Hyper-parameters. The length of the feature
prompt 𝐿𝑝 and the number of MSA layers applied are two crucial
hyper-parameters in our InsVP. To investigate their impact, we have
conducted extensive ablation experiments. As depicted in Figure 7,
the model’s performance initially improves and then declines with
the gradual increase of the feature prompt’s length. This behavior
arises due to the overfitting caused by an excessively large number
of parameters with limited training data. Regarding the experiments
on MSA layers, our feature prompt attains the best results when
applied across all layers of ViT. This is because, at this point, the
prompt can adapt the pretrained model across all network layers,
enabling the pretrained model to better accommodate downstream
tasks and consequently achieve superior performance.

(a) DAM-VP on SVHN (b) InsVP (Ours)  on SVHN

(c) DAM-VP on GTSRB (d) InsVP (Ours)  on GTSRB

Figure 8: Feature t-SNE visualization results for InsVP and
comparison method DAM-VP.

We also conduct ablation experiments to assess the impact of
image prompt fusion weight 𝛽𝐼 and feature prompt fusion weight
𝛽𝐹 . As depicted in Figure 7, when these two hyper-parameters are
either too large or too small, the performance is degraded. When
choosing intermediate values, patch prompt 𝒑𝑙 , global prompt 𝒑𝑔 ,
specific prompt𝒑𝑠 , and common prompt𝒑𝑐 can readily complement
each other, fully unleashing the potential of our method.

4.5.4 The t-SNE Visualization Results of Extracted Features. As
shown in Figure 8, we visualize the features obtained by InsVP and
DAM-VP via t-SNE [42]. From the visualization results, it is evident
that the features extracted by DAM-VP from samples of the same
category are relatively scattered, and some are mixed with features
from other categories. In contrast, the features extracted by our
InsVP from the same category are tightly clustered together, and
they exhibit good distinctiveness from features of other categories.
This is attributed to our instance image prompt and instance feature
prompt, which can recognize the most essential discriminative
characteristics of different category samples.

5 Conclusion
In this paper, we propose a novel and efficient instance visual
prompting method, named InsVP. In comparison to the task-level
or cluster-level visual prompting methods, our instance-level InsVP
achieves outstanding performance by extracting discriminative
characteristics of the individual instances using the proposed in-
stance image prompt and instance feature prompt. We demonstrate
that generating prompts directly from the original image itself
is more efficient and the visualization results also illustrate our
prompts are closely related to individual instances. In the future,
it is interesting to further investigate how to explicitly explore
hierarchical instance prompting to tackle instances with various
recognition difficulties.
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